Этап такой то

Структура продукции

Введение в кулинарию
Теги: витамины
  Среди разнообразия свойств, обусловливающих качество продукции общественного питания, определяющими являются свойства, связанные со структурой продукции. 
Именно формирование заданной структуры в конечном счете обусловливает качество кулинарных изделий и их кулинарную готовность.

Продукция общественного питания характеризуется многообразием структурных особенностей, которые определяются комплексом структурно-механических свойств

Большинство пищевых продуктов содержит значительное количество (50...85 %) воды, а в некоторых овощах (помидоры, переу сладкий, салат, щавель, огурцы и др.) ее еще больше (90...95 %), но благодаря особому внутреннему строению и свойствам содержащихся в них
компонентов (белки, углеводы, жиры) имеют определенную форму и структуру.

салат приготовление

Одной из основных задач технологии продукции общественного питания является придание в процессе производства кулинарным полуфабрикатам, кулинарным, мучным кондитерским и булочным изделиям, а также блюдам заданной формы и структуры.

Структура (внутреннее строение) пищевых продуктов — это взаиморасположение
их составных частей и устойчивые связи между ними, которые, в конечном счете, обеспечивают их целостность и тождественность самим себе.

Почти все пищевые продукты, так же как и продукция общественного питания, представляют собой гетерогенные многокомпонентные, многофазные дисперсные системы (особенно в случае взаимопроникновения компонентов, как это происходит во влажных коллоидных пористых материалах), обладающие внутренней структурой и специфическими физико-химическими, структурно-механическими и органолептическими
свойствами.

Дисперсные системы пищевых продуктов чрезвычайно разнообразны по химической природе, составу, физическим свойствам и назначению.

Они состоят из двух и более фаз, в которых дисперсионной средой является непрерывная фаза, а дисперсной фазой — раздробленная фаза, состоящая из частиц, не контактирующих друг с другом.

Дисперсные системы пищевых продуктов могут быть подразделены на пять типов:

• I тип — двухфазные системы, включающие твердую дисперсную и газовую фазы (мука, сахар, крахмал, поваренная соль, яичный порошок, сухое молоко, пищевые кристаллические кислоты, сухая горчица, порошкообразные пряности, какао порошок и др.);

• II тип — двухфазные системы, содержащие твердую фазу в жидкой дисперсионной среде (все виды суспензий и паст: фруктовые пюре и подварки, томатное пюре, вафельное тесто, молочные продукты, инвертные сиропы, помадки и т. д.);

• III тип — трехфазные системы, образуемые твердой, жидкой и газообразными фазами (все виды сахарного и затяжного теста, бисквитное тесто, зефирная масса, дрожжевое тесто, выпеченный полуфабрикат из песочное теста и т. д.);

• IV тип — системы, образуемые жидкую фазу в жидкой дисперсионной среде (эмульсии);

• V тип — системы, содержащие газовую фазу в жидкой дисперсионной среде (пены).

Согласно классификации академика П. А. Ребиндера, в основе которой лежит характер связей между твердыми частицами, мицеллами и макромолекулами, структуры пищевых продуктов подразделяются на коагуляционные, конденсационно-кристаллизационные и смешанные — коагуляционно-кристаллизационные.

Одним из основных типов структур являются коагуляционные структуры, образующиеся в дисперсных системах путем взаимодействия между частицами и молекулами через прослойки дисперсионной среды за счет вандерваальсовых сил сцепления.
Толщина прослойки соответствует минимуму свободной энергии.

Термодинамически стабильны системы, у которых с поверхностью частиц прочно связаны фрагменты молекул, способные без утраты этой связи растворяться в дисперсионной
среде.

В свою очередь, дисперсионная среда находится в связанном состоянии.

Обычно эти структуры обладают способностью к самопроизвольному восстановлению после разрушения (тиксотропия).

Нарастание прочности после разрушения происходит постепенно, обычно до первоначальной прочности.

Толщина прослоек в определенной мере зависит от содержания дисперсионной среды.

При увеличении ее содержания значения сдвиговых свойств обычно уменьшаются, а система из твердообразной переходит в жидкообразную.

При этом степень дисперсности, то есть преобладающий размер частиц, даже при постоянной концентрации фазы оказывает влияние на состояние системы и ее прочность.

Коагуляционные структуры образуются в различных видах мучного теста на самых начальных стадиях смешения муки с водой; к ним относятся творожные массы, колбасные фарши, котлетные массы (мясные, рыбные, овощные) и др.

Наличие структуры придает дисперсной системе своеобразные механические свойства (упругость, пластичность, вязкость), которые непосредственно связаны с молекулярными взаимодействиями в этих системах, особенностями строения и теплового движения их структурных элементов (мицелл и макромолекул) и частиц твердых фаз с взаимодействием этих элементов друг с другом и с молекулами дисперсионной среды, которые определяют сопротивление, возникающее в структуре при механической обработке.

С другой стороны, упруго-пластично-вязкостные и прочностные свойства систем определяют характер деформационных процессов.

В свете представлений, развитых П. А. Ребиндером, механические свойства коагуляционных структурированных дисперсных систем обусловливаются совокупностью двух различных основных причин:

• молекулярным сцеплением частиц дисперсной фазы друг с другом в местах контакта, т. е. в местах наименьшей толщины прослоек дисперсионной среды между ними.

В предельном случае возможен полный фазовый контакт.

Коагуляционное взаимодействие частиц вызывает образование структур с явно выраженными обратимыми упругими свойствами;

• наличием тончайшей пленки в местах контакта между частицами.

Сближение двух частиц, окруженных оболочками жидкой дисперсионной среды, будет осуществляться без затраты работы и без изменения свободной энергии лишь до некоторого расстояния между ними.

Начиная с этого расстояния между частицами появляются силы отталкивания, являющиеся результатом молекулярного сцепления жидкой фазы с поверхностью частиц.

По данным некоторых исследователей, силы отталкивания появляются начиная с расстояния 0,1 мкм.

Снижение содержания жидкой дисперсионной среды в коагуляционных структурах сопровождается изменением прочностных характеристик структуры.

При обезвоживании коагуляционных структур (при увеличении дисперсной фазы) наблюдается переход к плотным и прочным структурам, в которых частицы связаны друг с другом прямыми точечными (атомными) контактами с площадью в несколько квадратных ангстрем, т. е. соизмеримой с размерами нескольких атомов или ячейкой кристаллической
решетки.

Прочность их повышается, но после определенного предела они перестают быть обратимо-тиксотропными.

Восстанавливаемость структуры сохраняется в пластично-вязкой среде, когда разрушение
пространственного каркаса происходит без нарушения сплошности.

При наибольшей степени уплотнения структуры и наименьшей толщине прослоек жидкой среды восстанавливаемость и пластичность исчезают, кривая прочности в зависимости от влажности дает излом.

При образовании коагуляционных структур во многих пищевых продуктах (продукции общественного питания) существенную роль играют поверхностно-активные вещества (ПАВ) и растворенные в воде белки, которые выступают в качестве эмульгаторов и стабилизаторов образуемых систем и могут существенно изменять их структурно-
механические свойства (СМС).

Конденсационно-кристаллизационные структуры присущи натуральным продуктам, однако могут образовываться из коагуляционных при удалении дисперсионной среды или при срастании частиц дисперсной фазы в расплавах или растворах.

В процессе образования эти структуры могут иметь ряд переходных состояний: коагуляционно- кристаллизационные, коагуляционно-конденсационные; их образование
характеризуется непрерывным нарастанием прочности.

Основные отличительные признаки структур такого типа следующие: большая по сравнению с коагуляционными прочность, обусловленная высокой прочностью самих контактов; отсутствие тиксотропии и необратимый характер разрушения; высокая хрупкость и упругость из-за жесткости скелета структуры; наличие внутренних напряжений,
возникающих в процессе образования фазовых контактов и влекущих за собой в последующем перекристаллизацию и самопроизвольное понижение прочности вплоть до нарушения сплошности, например растрескивание при сушке (выпеченные полуфабрикаты из теста — заварного, песочного и др.).

Рассматривая понятие «структура», выделяют три ее уровня: макроструктуру, видимую невооруженным глазом; микроструктуру, определяемую при помощи оптического микроскопа, и ультраструктуру, видимую только в электронном микроскопе.

Микро- и макроструктуры дают представление о биологическом и преимущественно технологическом аспектах образования или преобразования структуры пищевых продуктов, ультраструктура — о химическом, физико-химическом и биохимическом строении структуры элементов.

Пищевые продукты по структуре можно разделить на следующие группы:

жидкости (напитки, молоко и др.), плотные жидкости (масла, бульоны и др.),

пластичные пищевые продукты (масло сливочное,маргарин, творог, котлетные массы из мяса, птицы, рыбы, овощные и др.),

пластичные продукты гелевой структуры
(желе, мармелад, студни, пудинги, муссы и др.),

плотные продукты клеточной структуры (овощи, плоды), плотные продукты фибриллярной структуры (мясо, рыба, птица).

Тип структуры и структурно-механические свойства пищевых продуктов определяют их консистенцию.

Консистенция является одним из сложнейших органолептических показателей как пищевых продуктов, так и приготовленной из них продукции общественного питания.

Под консистенцией продуктов питания понимают те особенности их строения и физическое состояние, которые наиболее полно обнаруживаются как комплекс осязательных ощущений, возникающих в полости рта при разжевывании и глотании пищи.

Поскольку потребитель в процессе пережевывании пищи кроме ощущения физического
состояния продукции воспринимает ее вкус, запах и другие свойства, то следует говорить о комплексном восприятии качества продукции, в котором показатель консистенции является более значимым для определения состояния кулинарной готовности.

Продукцию общественного питания по структуре можно разделить на две группы:

• первая — продукция с нативной (природной) структурой;

• вторая — продукция со структурой, сформированной в процессе ее производства.

Для продукции первой группы (мясо, рыба, птица, субпродукты, овощи, крупы, бобовые, макаронные изделия и др.) определяющим показателем кулинарной готовности является консистенция, которая должна быть такой, чтобы продукт легко раскусывался и разжевывался, сохраняя при этом первоначальную форму.
Продолжительность тепловой кулинарной обработки этой группы продукции до состояния
готовности определяется количеством и сложностью строения структурообразующих
ее компонентов.

Остальные показатели качества (вкус, запах, сочность и др.) формируются в течение времени, необходимого для доведения продуктов до состояния готовности.

Качество продукции этой группы в первую очередь определяется качеством исходного
сырья.

Для подавляющего большинства продукции второй группы структура (консистенция) формируется в ходе технологического процесса их производства: на стадии приготовления полуфабрикатов, при тепловой кулинарной обработке полуфабрикатов, при охлаждении и т. д.

В эту группу входят изделия и блюда из различных фаршей (мясных, рыбных, из птицы, овощей), муки, каш, яиц, творога, соусы, желированные блюда, крахмала, взбивные изделия, супы-пюре и др.

Структура (консистенция) продукции оценивается по органолептическим (нежность, жесткость, однородность, пористость, рыхлость, хрупкость, дисперсность, густота и др.) и структурно-механическим (вязкость, упругость, пластичность, напряжение сдвига, прочность и др.) показателям.

При органолептической оценке ощущаемая структура является результатом
комплексного восприятия нескольких показателей, среди которых, как правило, один является доминирующим.

Таким образом, структура продукции общественного питания характеризуется
совокупностью органолептических и структурно-механических свойств, которые являются производными микроструктуры, т. е. структуры, формирующейся вследствие физико-химических взаимодействий на молекулярном уровне между водой, белками, углеводами,
жирами и другими структурными компонентами, входящими в рецептуру продукции.

Для формирования устойчивых пищевых систем продукции второй группы, обладающей составом и структурой, отвечающим требованиям потребителей, в их технологиях определяющее значение имеют технологические факторы и структурообразующие свойства рецептурных компонентов.

К технологическим факторам в зависимости от вида продукции относятся: степень измельчения, дисперсность, интенсивность и продолжительность перемешивания, взбивания, температура нагревания или охлаждения, последовательность соединения рецептурных компонентов, формование и др.
Автор:  Елена Челнокова
Показать все статьи


Похожие Статьи

Мастер&повар - кулинарная школа




Вход


Вспомнить пароль Регистрация
x Поделится Email Распечатать